Association between TCF₇L₂ (rs7903146) and KCNQ₁ (rs2237895 & rs2237892) genetic variants and risk of developing type 2 diabetes (T₂D) in Egyptian populations

Mahmoud A. Alshenawy¹*, Moustafa A. Sakr², Mohammed F. Elshal¹, Shahira Elshafie³ and Mohamed Y. Nasr¹

1- Molecular Biology Department, Genetic Engineering and Biotechnology Institute (GEBRI), University of Sadat City, Sadat City, Egypt

2- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt

3- Department of Clinical Pathology, Faculty of Medicine, Fayoum University, Egypt

*Corresponding author E-mail: <u>mahmoud.abdelhamid.stu@gebri.usc.edu.eg</u> Co-authors E-mail: Mostafa.sakr@gebri.usc.edu.eg

mohamed.younis@gebri.usc.edu.eg

Received: July 28, 2022; Accepted: August 18, 2022; Available online: August 20, 2022

ABSTRACT

Diabetes mellitus "simply diabetes" is a serious case in which blood glucose levels rise because bodies of patients are unable to produce any or enough insulin, or because they are unable to use the insulin produced efficiently. It is the most prevalent type of diabetes, affecting nearly 90% of all diabetes worldwide. In patient of type 2 diabetes (T_2D), his muscle, fat and liver cells can respond inappropriately to insulin, which means they can't efficiently take up glucose from blood or store it. This is known as insulin resistance. To compensate, the pancreas initially produces extra insulin. Over time, the pancreas is unable to keep up and produces insufficient insulin to maintain normal blood glucose levels.

In this study, we investigate whether the two single nucleotide polymorphisms (SNPs) in the transcription factor 7-like 2 gene (TCF₇L₂) and KCNQ₁ gene are associated with risk of developing T₂D in Egyptian populations. PCR-RFLP analysis was carried out for KCNQ₁ (rs2237892 and rs2237895) and TCF₇L₂ (rs7903146) genes for 66 T₂D patients and 34 control healthy. In KCNQ₁ (rs2237892) and TCF₇L₂ (rs7903146) for diabetic patients has a relatively high risk for diabetes, however, KCNQ₁ (rs2237895) showed no statistical significant differences between the diabetic patients and the healthy group. In conclusion the TCF₇L₂ (rs7903146) and KCNQ₁ (rs2237892) are the most unambiguous genetic factors influencing type 2 diabetes in Egypt.

Keywords: T₂D, TCF₇L₂, KCNQ₁, PCR-RFLP.

INTRODUCTION

The body doesn't use insulin properly in T_2D , this is referred to as insulin resistance, to compensate the pancreas produces extra insulin at first. Over time, the pancreas is incapable to keep up and produces deficient insulin to maintain normal blood glucose levels (Ericson *et al.*, 2018). T_2D is also known as non-insulindependent diabetes mellitus (NIDDM), consideration more than 95 percent of diabetics. Its prevalence is increasing worldwide, but the most noticeable changes are now being seen in low and middleincome countries. T_2D is asymptomatic for many years and thus goes unnoticed in nearly half of those affected by the disease (Holt *et al.*, 2017). A variety of factors can contribute to T_2D . Although the exact causes are unknown, there is no b-cell autoimmune destruction, and none of the other known causes of diabetes are present in the patients (American Diabetes Association, 2021).

The Transcription factor 7-like 2 (TCF_7L_2) also known as TCF₄, is gene certainly the gene with the most significant effect on T₂D that has been identified to date (Holck et al., 2009). Because of its effects on pro- insulin processing and production, TCF_7L_2 is also regarded as a master regulator of glucose homeostasis (Liu et al., 2017). The in cretin hormone glucagon-like peptide 1" is an important player in glucose homeostasis "GLP-1 which is produced in the small intestine by enteroendocrine Lcells and has a variety of beneficial effects on blood glucose control. TCF7L2 was discovered to be a transcription factor involved in the canonical Wnt signaling pathway before being discovered to be a T₂D gene. Wnt signals play a role in many processes, essential cellular including embryonic development, cell fate, stem cell maintenance. cell proliferation, tumor migration, suppression, cell and oncogenesis (Holck et al., 2009).

The potassium voltage-gated channel KOT-like subfamily, member 1 (KCNO₁) is a gene that associated with T_2D and there was an evidence that the potassium voltagegated channel (GWAS) can identify this gene and therefore can be used as disease management targets. KCNQ₁ gene encodes proteins that belong to the cell potassium channel family, which is important for insulin secretion and is targeted bv sulfonylurea derivatives, which are already broadly used anti-diabetic drugs. SNP selection and genotyping were carried out on two KCNO₁ **SNPs** (rs2237892 and rs2237895) which had previously been linked to type 2 diabetes in other studies (Yu et al., 2012). The excess risk of T2D associated with KCNQ₁ SNPs is most likely due to a decrease in insulin secretion, increased "FBS" levels, or "HbA1c", implying that KCNQ₁ variants may play an important physiological role in the metabolism also dynamic balance of blood glucose. In addition to their inconsistent association with T_2D , KCNQ₁ is linked to plasma lipid parameters..

This work aims to define at the relationship between TCF_7L_2 (rs7903146) and KCNQ1 (rs2237895 & rs2237892) gene polymorphisms with T_2D in Egyptian patients with potential impact on disease prediction, prevention and therapy response studies. TCF_7L_2 and KCNQ₁ were denimreted genotyped using the polymerase chain reaction method.

SUBJECTS AND METHODS 1. Study design and population

In this study, a total of 100 persons, including 66 T₂D patients and 34 nondiabetic of ethnicity selected population over the period from December 2019 to October 2020. investigate to some gene polymorphisms in T_2D among Egyptians populations. Routine laboratory investigations included FBS, HbA1c, CHO, TG, HDL, LDL, urea, Cr, GPT, GOT and CBC in addition to detection of TCF7L2 (rs7903146) gene in addition to two "SNPs in KCNQ₁, (rs2237892, & rs2237895) by Polymerase using Chain Reaction-**Restriction Fragment Length Polymorphism** (PCR-RFLP).

2. Sample collection & preparation

Samples were obtained from Omar Bin Al Khattab Hospital (Cairo), Arab Contractors Medical Center (Cairo), Al Seddiq Medical Clinics (Cairo) and Octa Lab (Giza). Verbal approval of participants had been obtained. All blood samples were collected. Venous blood samples (5 ml) were taken from fasting participants from 9 to 12 hr. and were divided by sodium

Association between TCF₇L₂ (rs7903146) and KCNQ₁ (rs2237895 & rs2237892) genetic variants and risk of developing type 2 diabetes (T₂D) in Egyptian populations

fluoride tube, EDTA tube and serum separator gel tube.

3. Routine laboratory investigations:

Fasting blood sugar (FBS)", HbA1c, cholesterol (CHO), "high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides (TG), creatinine (Cr), urea, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), were performed spectrophotometer on a (ADALTIS S.r.l. UM-PCHM01 and Clini-Chem 1 ES1022008PN281 Biomed) using (Spectrum and Biomed diagnostics kits) Egypt and complete blood count "CBC" was carried out on"3 part differential automated cell counter (Genrui auto hematology analyzer KT-6400)".

4. DNA extraction & molecular genotyping

DNA was extracted from whole blood (EDTA tubes), and 100 patients (66 and 34 healthy) T_2D patients were genotyped by PCR-RFLP for TCF7L2 (rs7903146). The TCF7L2 (C/T)polymorphism was genotyped using the primers listed following: Forward "5'-AAG AGA AGA TTC CTT TTT AAA TGG TG-3'", Reverse "5'-CCT CAT ACG GCA ATT AAA TTA TAC A-3'"and positive amplicons digested with Hpy-CH4III "Thermo Fisher Scientific Inc, Waltham, MA, USA" restriction enzyme at 37°C overnight. Two SNPs in KCNQ1 (rs2237892 & rs2237895), one primer set forward primer: "5'-GCTGCAGCCCGTGTTCCT-3'"; reverse primer: "5'-CGCATTCCGGGGGGCTTCC-3" were designed to amply DNA segment containing rs2237892 diverse in KCNQ₁. The second primer set for "5'-"rs2237895" diverse was TGGGGCAGGGGTGTCTTTA-3"(forward and "5" primer) TCTGCCTCTTGGTCTCATCTTTAC-3"

(reverse primer). Cfr9I"Xma I" was used to digest both PCR products. Thermo Fisher Scientific Inc, Waltham, MA, USA at 37 °C for 4 h. A total reaction volume of 18 µL for the PCR-RFLP was designated, which contained 2 µL of genomic DNA, 1 µL of each primer, 2 µL PCR buffer, 10 µL PCR master mix "Thermo Fisher Scientific Inc, Waltham, MA, USA". The PCR-RFLP was carried out on AmpiliSeq Thermal Cycler under the following cases: "95°C for 15 min, then 34 cycles of 95°C for 30 sec, 58°C for 30 sec, 72°C for 30 sec and a final extension of 72°C for 9 min. Digested products were loaded on a 3% agarose gel electrophoresis at 100 V for 30 minute "ethidium stained with bromide&" photographed in investigated by Gel-Doc Imaging System (E-Box VILBER, France).

5. Statistical analysis:

The information was entered into a computer and analysed using "IBM SPSS software package version 20.0. (Armonk, NY: IBM Corp)" to describe qualitative data, numbers & percentages were used. The Kolmogorov-Smirnov test" was used to confirm the distribution's normality. Range min and max, standard deviation, mean, median and interquartile range (IQR) were used to describe quantitative data. The significance of the gained results was determined at the 5% level.

RESULTS

Clinical characteristics:

In this study,a total of 100 persons and were categorizedinto 2 groups; (66 patient group) with median age of 58 years old (30 were males (45.5%) and 36 were females (54.5%) and (34 healthy group) individuals with median age of 45.5 years old (15 males (44.1%) and 19 females (55.9%)). There were no discernible differences in sex between T_2D patients and healthy. But age significant was between patients with T_2D and control. The results indicated that the values of FBS, HBA1C, Urea, and Creatinine were increased significantly in T_2D patients than controls individuals (P<0.001). The hematological parameters showed that, the values of the RBCs, Hb, Platelets and WBCs were not different significantly among the two groups (P>0.05). Also the CHO, TG, HDL, LDL, GPT and GOT levels were not significantly varied between the two groups "(P>0.05) (Table 1).

Genotypic characteristics:

The Genotype distributions of all "KCNQ₁ polymorphisms were conformed to the Hardy-Weinberg equilibrium in all studied groups. In KCNQ1 (rs2237892) for diabetic patients, frequencies for the "CC", "CT", and "TT" genotypes were 24.2%, 60.6% and 15.2%, respectively. In controls, these distributions were 29.4%, 35.3% and 35.3%, respectively. Compared to TT genotypes, CT genotypes has a relatively high risk for diabetes (p = 0.016) (Table 2). PCR-RFLP analysis of the "KCNQ₁ (rs2237892) locus revealed two bands of "220 bp "and "67 bp" in the "CC homozygote genotype", one band of "287 bp" in the "TT" homozygote, and three bands of "287 bp", "220 bp", "&67 bp" in the "CT heterozygote genotype (Fig. 1).

On the other hand, the genotype and allele distributions of KCNQ₁ (rs2237895) polymorphism showed no statistically significant between the diabetic patients and the healthy group as (p value > 0.05) (Table 2). PCR-RFLP analysis of the $KCNO_1$ (rs2237895) site revealed two bands of "294 bp" and " 191 bp" in the "CC homozygote genotype", one band of "485 bp" in the "AA homozygote", and three bands of "484 bp", "294 bp", "&191 bp" in the "AC heterozygote genotype (Fig. 2).

Regarding the genotype and allele distributions of TCF_7L_2 (rs7903146), in

comparison with the healthy patients, the diabetic patients had a higher frequency of CC genotype (21.2% vs 5.9%, P=0.034)". TC & TT genotypes frequency were not significantly variant between the two groups (37.9% vs 38.2%, 40.9% vs 55.9%, respectively) (Table 2). PCR-RFLP analysis of the TCF7L2 (rs7903146) site revealed two bands of "112 bp" and "24 bp" in the "TT homozygote genotype", one band of "136 bp" in the "CC homozygote", and three bands of "136 bp", "172 bp", and "24 bp" in the "CT heterozygote genotype (Fig. 3).

The common T_2D clinical pathological features including FBS, CHO, TG, HDL, LDL, Urea, Creatinine, GPT, GOT, Hb, RBCs, WBCs and Platelets. No significant relation was observed between the KCNQ₁ (rs2237892 and rs2237895) and TCF₇L₂ (rs7903146) gene polymorphisms and all clinic-pathologic status and markers. Only HbA1c was significant with KCNQ₁ (rs2237892) gene (p=0.016) (Tables 3, 4, 5).

Diabetic patients had significantly higher "C allele genotypic" frequencies than the healthy group. (P=0.020). Collectively, data suggested that. these KCNQ₁ (rs2237892) CT genotype and TCF_7L_2 (rs7903146) CC genotypes may be considered as risk factors for the diabetes among Egyptian populations.

DISCUSSION

The present findings indicated that the SNPs KCNQ₁ (rs2237892), and TCF₇L₂ (rs7903146) may be considered as risk factors for T₂D among Egyptian patients, but SNPs (rs2237895) may be not considered as risk factors for the T₂D among Egyptian patients. In Icelandic, Asian Indian, Danish, and US samples, the SNP TCF₇L₂ (rs7903146) had the strongest association with T₂D (Bodhini *et al.*, 2007; Grant *et al.*, 2006). TCF₇L₂ gene variants have been replicated in a variety of ethnic groups and have been linked to T₂D (Cauchi *et al.*,

Association between TCF₇L₂ (rs7903146) and KCNQ₁ (rs2237895 & rs2237892) genetic variants and risk of developing type 2 diabetes (T₂D) in Egyptian populations

2007), including Caucasians(Van Vliet-Ostaptchouk *et al.*, 2007), Ghanaians (Danguah et al., 2013), Europeans (Helgason et al., 2007), Indians (Chandak et al., 2007), Africans (Humphries et al., 2006), and East Asians (Ng et al., 2007; Hayashi et al., 2007). Among which, TCF₇L₂ (rs7903146) SNPs had the strongest relationship with disease susceptibility (Cauchi et al., 2007; Humphries et al., 2006; Ng et al., 2007; Hayashi et al., 2007). The association between TCF7L2 and T2D varied in Arab region, and it was strong in Tunisians (Ezzidi et al., 2009), Moroccans (Cauchi et al., 2007), Omanis (Al-Sinani, 2015) and Palestinians (Erequine et al., 2010), In the United Arab Emirates or Saudi Arabia, there was a weak or no significant association (Saadi et al., 2008; Alsmadi et al., 2008).

TCF₇L₂ (rs7903146) gene polymorphism was discovered to be associated with T₂D patients (Bahaaeldin *et al.*, 2020). The KCNQ₁ SNPs (rs2237892 and rs2237895) showed strong associations with T₂D in Chinese population (Qi *et al.*, 2009; Yu *et al.*, 2012).

All genetic models revealed significant associations between different populations "Caucasian", "East Asian" and "South Asian populations" in the ethnicitybased stratified analysis, demonstrating that the "C alleles" of "rs2237892 and rs2237895" KCNQ₁ polymorphism are a risk factor for developing T₂D (Sun et al., 2012).

Regarding the genotype and allele distributions of TCF_7L_2 (rs7903146) compared with the control group, the diabetic patients had a higher frequency of "CC" genotype (21.2% vs 5.9%, P=0.034). TC and TT genotypes frequency were not significantly varied between the two groups (37.9% vs 38.2%, 40.9% vs 55.9%, respectively). C allele genotypic frequencies

in diabetic patients had significantly higher levels than the healthy group (P=0.020). Collectively, these data suggested that, KCNQ₁ (rs2237892) CT, TT genotype and TCF₇L₂ (rs7903146) CC genotypes may be considered as risk factors for diabetes among Egyptian patients.

Conclusion:

 TCF_7L_2 (rs7903146) and $KCNQ_1$ (rs2237892) are the most probable genetic factors influencing type 2 diabetes in Egyptian patients.

REFERENCES

- Al-Sinani, S. (2015). Association of Gene Variants with Susceptibility to Type 2 Diabetes among Omanis. World J. Diabetes, 6(2):358. https://doi.org/10.4239/wjd.v6.i2.358
- Alsmadi, O.; Khalid, A.; Gamal, M.; Fadi,
 A.; Haya, A.; Nouran, A.; Nasser,
 A.; Shahinaz, M. and Brian F.M. (2008). Weak or No Association of TCF7L2 Variants with Type 2
 Diabetes Risk in an Arab Population.
 BMC Medical Genetics 9 (7).
 https://doi.org/10.1186/1471-2350-9-72.
- Bahaaeldin, A.M.; Arig, A.S.; Amira, I.H. and Walaa, A.Y.K. (2020). Transcription Factor 7-Like-2 (TCF7L2) Rs7903146 (C/T) Polymorphism in Patients with Type 2 Diabetes Mellitus. Dubai Diabetes and Endocrinology J., 26(3):112–18. https://doi.org/ 10.1159/000509756.
- Holt, R. I.; Cockram, C.; Flyvbjerg, A. and Goldstein, B. J. (Eds.). (2017). Textbook of Diabetes. John Wiley & Sons.
- Bodhini, D.; Venkatesan, R.; Monalisa, D.; Nagarajan, N.; and Viswanathan, M. (2007). The Rs12255372(G/T) and Rs7903146(C/T) Polymorphisms of

the TCF7L2 Gene Are Associated with Type 2 Diabetes Mellitus in Asian Indians. Metabolism: Clinical and Experimental 56 (9): 1174–78. https://doi.org/10.1016/j.metabol.200 7.04.012.

- Cauchi, S.; Younes, E.; Hélène, C.; Christian, D.; Franz, K.; Raimund, W.; Chakib, N., et al. (2007). TCF7L2 Is Reproducibly Associated with Type 2 Diabetes in Various Ethnic Groups: A Global Meta-Analysis. J. Molecular Medicine, 85(7): 777–82. https://doi.org/ 10.1007/s00109-007-0203-4.
- Chandak, G.R.; C.S. Janipalli; S. Bhaskar; S.R. Kulkarni; P. Mohankrishna; A.T. Hattersley, T.M. Frayling and C.S. Yajnik (2007). Common Variants in the TCF7L2 Gene Are Strongly Associated with Type 2 Diabetes Mellitus in the Indian Population." Diabetologia, 50(1): 63–67. https://doi.org/10.1007/ s00125-006-0502-2.
- American Diabetes Association (2021). Improving Care and Promoting Health in Populations: Standards of Medical Care in Diabetesd. Diabetes Care, 44(1):S7–S14. | https://doi. org/10.2337/dc21-s001
- Danquah, I.; Till, O.; Laura, K.F.; George, B.; Matthias, B.S. and Frank, P.M. (2013). The TCF7L2 Rs7903146 (T) Allele Is Associated with Type 2 Diabetes in Urban Ghana: A Hospital-Based Case-Control Study. BMC Medical Genetics 14 (1). https://doi.org/10.1186/1471-2350-14-96.
- Ereqat, S.; Abedelmajeed, N.; Stéphane, C.; Kifaya, A.; Ziad, A.; and Riyad, A. (2010). Association of a Common Variant in TCF7L2 Gene with Type 2 Diabetes Mellitus in the Palestinian Population." Acta Diabetologica

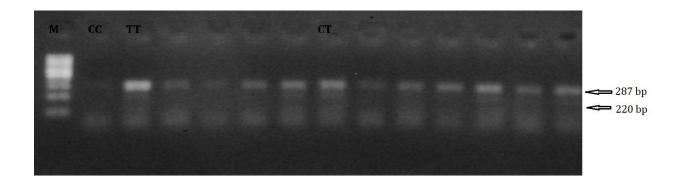
47(1). At: https://doi.org/10.1007/ s00592-009-0161-0.

- Ezzidi, I.; Nabil, M.; Stéphane, C.;
 Emmanuel, V.; Aurélie, D.; Molka, C.; Maha, K., et al. (2009).
 Contribution of Type 2 Diabetes
 Associated Loci in the Arabic
 Population from Tunisia: A CaseControl Study. BMC Medical
 Genetics 10(4). https://doi.org/
 10.1186/1471-2350-10-33.
- Grant, S.F.A.; Gudmar, T.; Inga, R.; Rafn, B.; Andrei, M.; Jesus, S.; Agnar, H., et al. (2006). Variant of Transcription Factor 7-like 2 (TCF7L2) Gene Confers Risk of Type 2 Diabetes. Nature Genetics 38 (3): 320–23. https://doi.org/10.1038/ ng1732.
- Hayashi, T.; Y. Iwamoto; K. Kaku; H. Hirose and S. Maeda (2007). Replication Study for the Association of TCF7L2 with Susceptibility to Type 2 Diabetes in a Japanese Population. Diabetologia 50(5): 980-84. https://doi.org/ 10.1007/s00125-007-0618-z.
- Helgason, A.; Snæbjörn, P.; Gudmar, T.; Struan, F.A.G.; Valur, E.; Steinunn, G.; Adebowale, A., et al. (2007). Refining the Impact of TCF7L2 Gene Variants on Type 2 Diabetes and Adaptive Evolution.Nature Genetics 39 (2): 218–25. https://doi. org/10.1038/ng1960.
- Holck, P.; Annika, S. and Ulrika, N. (2009). Lund University Publications.Res. in Developmental Disabilities 16(1): 79–88.
- Humphries, S.E.; David, G.; Jackie, A.C.; Helen, I.; Jeffrey, W.S.; Steven, J.H.; Ka, W.L., et al. (2006). Common Variants in the TCF7L2 Gene and Predisposition to Type 2 Diabetes in UK European Whites, Indian Asians and Afro-Caribbean Men and

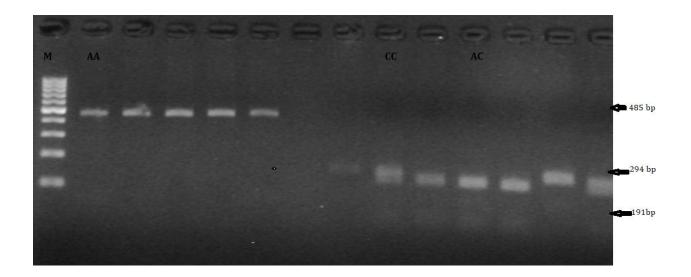
65

Association between TCF₇L₂ (rs7903146) and KCNQ₁ (rs2237895 & rs2237892) genetic variants and risk of developing type 2 diabetes (T₂D) in Egyptian populations

Women. J. Molecular Medicine 84(12): 1005–14. https://doi.org/ 10.1007/s00109-006-0108-7.


- Ericson, U.; Hindy,G.; Drake, I.; Schulz, C.; Brunkwall, L.; Hellstrand, S.; Almgren, P. and Orho-Melander, M. (2018). Dietary and genetic risk scores and incidence of type 2 diabetes. Genes & Nutrition,13(13).https://doi.org/10.10 07/s13668-014-0103-5.Diet.
- Liu, L.; Jingjie, L.; Mengdan, Y.; Jing, L.; Junyu, C.; Yi, Z.; Xikai, Z., et al. (2017). TCF7L2 Polymorphisms and the Risk of Schizophrenia in the Chinese Han Population. www.impactjournals.com/oncotarget
- Ng, M.C.Y.; Claudia, H.T.T.; Vincent, K.L.L.; Wing, Y.S.; Ronald. C.W.M., and Juliana, C.N. C. (2007). Replication and Identification of Novel Variants at TCF7L2 Associated with Type 2 Diabetes in Hong Kong Chinese. J. Clin. Endocrinol. and Metabolism, 92(9): 3733–37.

https://doi.org/10.1210/jc.2007-0849.


- Qi, Q.; Huaixing, L.; Ruth, J.F.L.; Chen, L.; Ying, W.; Frank, B.H.; Hongyu, W.; Ling, L.; Zhijie, Y. and Xu, L. (2009).Common Variants in KCNQ1 Are Associated with Type 2 Diabetes and Impaired Fasting Glucose in а Chinese Han Population. Human Molecular Genetics 18(18): 3508-15. https://doi.org/10.1093/hmg/ddp294.
- Saadi, H.; Nicolaas, N.; S.G. Carruthers;

Sheela, B.; Samar, A.; Richard, R.; Miodrag, L. and M. G. Nicholls (2008). Association of TCF7L2 Polymorphism with Diabetes Mellitus, Metabolic Syndrome, and Markers of Beta Cell Function and Insulin Resistance in a Population-Based Sample of Emirati Subjects. Diabetes Res. and Clin. Practice 80(3):392–98. At: https://doi.org/ 10.1016/j.diabres.2008.01.008.

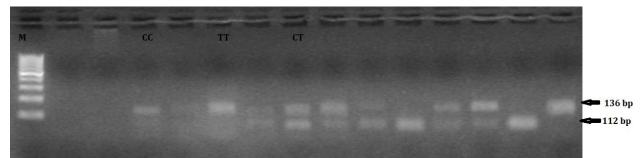

- Sun, Q.; Kang, S.; Xizhong, S. and Yu, C. (2012). The Association between KCNQ1 Gene Polymorphism and Type 2 Diabetes Risk: A Meta-Analysis.PLoS ONE 7(11). https://doi.org/10.1371/journal.pone. 0048578.
- Vliet-Ostaptchouk, J.V.V.; R. Shiri-Sverdlov: A. Zhernakova: E. Strengman; T.W. Van Haeften; M.H. Hofker and C. Wijmenga (2007). Association of Variants of Transcription Factor 2 7-like (TCF7L2) with Susceptibility to Type 2 Diabetes in the Dutch Breda Cohort. Diabetologia, 50(1): 59-62. https://doi.org/10.1007/s00125-006-0477-z.
- Yu, W.; R.C. Ma; C. Hu; W.Y. So; R. Zhang; C. Wang, C. H. Tam, et al. 2012. "Association between KCNQ1 Genetic Variants and Obesity in Chinese Patients with Type 2 Diabetes.Diabetologia, 55 (10): 2655–59. At: https://doi.org/10.1007/ s00125-012-2636-8.

Fig. 1. PCR-RFLP analysis of the KCNQ1 rs2237892 locus revealed two bands of 220 bp and 67 bp in the CC homozygote genotype, one band of 287 bp in the TT homozygote, and three bands of 287 bp, 220 bp, and 67 bp in the CT heterozygote genotype. M = 100 bp ladder DNA marker.

Fig. 2. PCR-RFLP analysis of the KCNQ1 rs2237895 locus revealed two bands of 294 bp and 191 bp in the CC homozygote genotype, one band of 485 bp in the AA homozygote, and three bands of 484 bp, 294 bp, and 191 bp in the AC heterozygote genotype. M = 100 bp ladder DNA marker.

Fig. 3. PCR-RFLP analysis of the TCF7L2 (rs7903146) locus revealed two bands of 112 bp and 24 bp in the TT homozygote genotype, one band of 136 bp in the CC homozygote, and three bands of 136 bp, 172 bp, and 24 bp in the CT heterozygote genotype. M = 100 bp ladder DNA marker.

Parameters	Diabetes (n =66) Mean ± SD	Non diabetes (n = 34) Mean ± SD	Test of Sig.	Ρ
Demographic data			*	0.004*
Age (years)	56.44 ± 9.91	47.74 ± 9.78	$t = 4.180^*$	< 0.001*
Sex, n (%)	M, 30(45.5%)-	M, 15(44.1%)-	$\chi^2 = 0.016$	0.899
	F, 36(54.5%)	F, 19(59.9%)		
Biochemical		·		
parameters				
FBS (mg/dl)	194.58 ± 106.15	92.32 ± 12.95	$U=222.0^{*}$	< 0.001*
HbA1c (%)	9.45 ± 3.11	5.52 ± 0.54	t=9.959*	< 0.001*
Total cholesterol (mg/dl)	183.8 ± 50.16	190.4 ± 46.29	t=0.639	0.524
Triglycerides (mg/dl)	166.9 ± 85.35	138.9 ± 74.59	U=912.50	0.127
HDL (mg/dl)	39.53 ± 13.80	40.09 ± 10.92	U=1007.0	0.402
LDL (mg/dl)	111.0 ± 47.90	122.4 ± 36.89	t=1.215	0.227
Urea (mg/dl)	38.91 ± 17.18	29.41 ± 16.65	580.0^*	< 0.001*
Creatinine (mg/dl)	1.05 ± 0.43	0.85 ± 0.24	570.0^*	< 0.001*
GPT (U/L)	26.17 ± 10.61	22.35 ± 9.96	U=858.50	0.055
GOT (U/L)	29.20 ± 11.40	25.44 ± 8.47	t=1.693	0.094
Hematological				
profile				
Hb (gm/dl)	12.62 ± 1.58	12.28 ± 1.42	t=1.073	0.286
RBCs 10^6 /µL	4.67 ± 0.44	4.51 ± 0.67	t=1.219	0.229
HCT (%)	37.40 ± 3.97	35.81 ± 4.83	t=1.759	0.082
WBCs 10^3 /µL	8.08 ± 3.33	6.72 ± 1.39	U=857.50	0.054
PLTs 10^3 /µL	263.4 ± 75.49	282.2 ± 72.99	t=1.199	0.233

Table 1. Selected clinical and demographic characteristics of patients and controls.

t: Student t-test. - U: Mann Whitney test- *: Statistically significant at $p \le 0.05$ χ^2 : Chi square test - M: Male - F: Female

	Diabetes		Non	diabetes				
Genotypes	(n = 66)		(n = 34)		χ^2	р	OR	CI. 95%
	No.	%	No.	%				(LL - UL)
KCNQ1 (rs2237892)								
CC	16	24.2	10	29.4	0.312	0.577	0.768	0.304 - 1.943
СТ	40	60.6	12	35.3	5.760^{*}	0.016^{*}	2.821	1.194 – 6.661
TT	10	15.2	12	35.3	5.306*	0.021^{*}	0.327	0.124 - 0.867
HWE	0.071		0.089					
Allele								
С	72	54.5	32	47.1	1 009	0.215	1.350	0.751 - 2.427
Т	60	45.5	36	52.9	1.008	0.315	0.741	0.412 - 1.332
KCNQ1 (rs2237895)								
AA	51	77.3	29	85.3	0.902	0.342	0.586	0.193 - 1.779
AC	12	18.2	4	11.8	0.688	0.407	1.667	0.494 - 5.625
CC	3	4.5	1	2.9	0.150	FEp=1.000	1.571	0.157 - 15.706
HWE	0.064	•	0.117	•				
Allele								
А	114	86.4	62	91.2	0.984	0.321	0.613	0.231 - 1.624
С	18	13.6	6	8.8	0.984	0.521	1.632	0.616 - 4.323
TCF7L2 (rs7903146)								
CC	15	21.2	2	5.9	4.513	0.034^{*}	4.706	1.009 - 21.956
СТ	25	37.9	13	38.2	0.001	0.972	0.985	0.420 - 2.309
ТТ	26	40.9	19	55.9	2.465	0.116	0.513	0.222 - 1.186
HWE	0.073		0.909					
Allele								
С	55	41.7	17	25.0	5 411*	0.020*	2.143	1.120 - 4.100
Т	77	58.3	51	75.0	5.411*	0.020^{*}	0.467	0.244 - 0.893

Table (2): Comparison between the two studied groups according to genotypes

KCNQ1 (rs2237892)								
	CC (n :	= 16)	CT (n =	40)	TT (n =	10)	Test of Sig.	р
	No.	%	No.	%	No.	%		
Age (years)								
30 - 40	1	6.3	2	5.0	1	10.0		
41 - 50	4	25.0	8	20.0	4	40.0		
51 - 60	4	25.0	13	32.5	3	30.0	$\chi^2 = 4.717$	0.809
61 – 70	5	31.3	15	37.5	2	20.0		
71 - 80	2	12.5	2	5.0	0	0.0		
Min. – Max.	40.0 - 1	74.0	40.0 - 77	7.0	37.0-6	6.0		
Mean ± SD.	56.81 ±	11.0	57.38 ± 9	9.55	$52.10 \pm$	9.31	F=1.154	0.322
Median	58.0		59.0		50.50			
Gender								
Male	7	43.8	18	45.0	5	50.0	2 0 105	0.040
Female	9	56.3	22	55.0	5	50.0	$\chi^2 = 0.105$	0.949
FBS (mg/dl)	l							
Min. – Max.	104.0 -	422.0	82.0 - 45	55.0	100.0 -	471.0		
Mean \pm SD.	229.9 ±		183.3 ± 1		$183.2 \pm$		H=4.203	0.122
Median	214.0		151.0		130.5			0.122
HbA1c (%)							1	
Min. – Max.	5.50 -	15.60	4.80 - 14	4.80	5.70 - 1	5.60		
Mean \pm SD.	11.36 ±		$8.77 \pm 2.$			9.13 ± 3.58		0.016^{*}
Median	11.05	5.07	7.95		7.85		F=4.448*	0.010
Total cholesterol	11.05		1.55		7.05			
(mg/dl)								
Min. – Max.	108.0 -	298.0	98.0 - 31	11.0	122.0 -	341.0		
Mean \pm SD.	184.4 ±		183.5 ± 4		122.0 ± 511.0 183.9 ± 65.52		F=0.002	0.998
Median	181.0	50.11	103.5 ± 1 174.0	+7.5	160.5		1=0.002	0.770
	181.0		1/4.0		100.5			
Triglycerides (mg/dl)	65.0-3	262 0	60.0 - 44	10.0	72.0 - 2	70.0		
(ing/ui) Min. – Max.	05.0	502.0	00.0 - 44	+9.0	12.0-2	70.0	H=0.057	0.972
Mean \pm SD.	165.7 ±	70.06	166.9 ± 8	20.07	169.1 ±	07 06	H=0.037	0.972
		19.90		69.97		82.80		
Median	165.0		150.0		178.0			
HDL (mg/dl) Min. – Max.	21.0	51.0	21.0 7	2.0	20.0 0	0.0		
Min. $-$ Max. Mean \pm SD.	21.0 - 3		21.0 - 73		20.0 - 90.0 35.60 ± 21.90		11-2.072	0.127
	37.81 ±	9.34	41.20 ± 1 39.0	12.84		21.90	H=3.973	0.137
Median	38.50		39.0		28.0			
LDL (mg/dl) Min. – Max.	48.0 - 2	42.0	21.0 - 21	7.0	55 0 22	2.0		
Min. $-$ Max. Mean \pm SD.	48.0 - 2 113.4 ±		21.0 - 21 109.2 ± 4		55.0 - 232.0 114.4 ± 53.74		F=0.071	0.932
Median	102.0	-7.70	109.2 ± 4 100.0	0.07	102.0	· J · I T	1-0.071	0.752
	102.0		100.0		102.0		1	
Urea (mg/dl)								
Min. – Max.) – 75.0		- 126.0		23.0 - 55.0		
Mean \pm SD.		5 ± 15.52		± 19.38	3:	5.30 ± 9.26	H=0.152	0.927
Median	-	33.0	34	4.0		32.50		
Creatinine (mg/dl)	0.00	1.00	0.00	2.00		00 1 20		
Min. – Max. Mean ± SD.		-1.88		- 3.98		0.88 - 1.20	II_0 902	0.660
Mean \pm SD. Median		5 ± 0.30 0.97		± 0.52 .96		$.01 \pm 0.11$ 1.0	H=0.803	0.669
wieulan		J.71	0.	.70		1.0		

Table (3): Relation between KCNQ1 (rs2237892) and different parameters in diabetes group (n = 66).

Mahmoud A. Alshenawy et al.

GPT (U/L)					
Min. – Max.	17.0 - 41.0	11.0 - 59.0	10.0 - 52.0		
Mean \pm SD.	25.38 ± 6.53	26.13 ± 11.84	27.60 ± 11.43	H=0.511	0.774
Median	24.0	23.50	26.0		
GOT (U/L)					
Min. – Max.	18.0 - 53.0	14.0 - 66.0	10.0 - 53.0		
Mean \pm SD.	28.19 ± 8.26	29.82 ± 12.52	28.30 ± 11.89	F=0.150	0.861
Median	26.0	29.0	28.0		
Hb					
Min. – Max.	10.60 - 16.70	8.80 - 15.60	10.80 - 14.50		
Mean ± SD.	13.19 ± 1.54	12.34 ± 1.61	12.85 ± 1.36	F=1.847	0.166
Median	13.50	12.35	13.35		
RBCs					
Min. – Max.	4.03 - 5.57	3.45 - 5.64	4.05 - 5.17		
Mean ± SD.	4.71 ± 0.45	4.63 ± 0.45	4.73 ± 0.42	F=0.342	0.711
Median	4.76	4.65	4.82		
НСТ					
Min. – Max.	31.90 - 46.20	28.20 - 42.90	31.80 - 43.40		
Mean ± SD.	39.10 ± 4.07	36.61 ± 3.75	37.83 ± 4.13	F=2.416	0.098
Median	38.60	36.80	39.10		
WBCs					
Min. – Max.	4.50 - 14.50	2.70 - 14.20	1.90 - 21.40		
Mean ± SD.	8.30 ± 2.92	7.87 ± 2.93	8.55 ± 5.29	H=0.188	0.910
Median	7.85	7.30	7.20		
χ^2 : Chi square tes	st	MC: Monte Car	lo H: H for Krusk	al Wallis tes	t

 χ^2 : Chi square test F: F for ANOVA test

p: p value for comparison between different categories

*: Statistically significant at $p \leq 0.05$

$\operatorname{group}\left(\mathbf{n}=\mathbf{o}\right)$	·).		VCNO1 (1	
	KCNQ1 (rs2237895) AA (n = 51) AC (n = 12) CC (n = 3)						Test of	
	AA (I No.	<u>= 51)</u> %	AC (f	$\frac{1}{2}$	No.	$\frac{n=3}{6}$	Sig.	р
Age (years)	110.	/0	110.	/0	110.	/0		
Age (years) 30 - 40	2	3.9	2	16.7	0	0.0		
41 - 50	11	21.6	3	25.0	2	66.7		
51 - 60	16	31.4	3	25.0	1	33.3	$\chi^2 = 7.166$	^{мс} р=0.417
61 - 70	19	37.3	3	25.0	0	0.0	λ =7.100	p=0.117
71 - 80	3	5.9	1	8.3	0	0.0		
Min. – Max.		- 77.0	37.0 -	- 74.0		- 60.0		
Mean \pm SD.		± 9.55		± 11.69		± 7.21	F=1.109	0.336
Gender								
Male	22	43.1	7	58.3	1	33.3	2 1 107	MC 0 C41
Female	29	56.9	5	41.7	2	66.7	$\chi^2 = 1.187$	^{мс} р=0.641
FBS (mg/dl)								
Min. – Max.		455.0		413.0	123.0	- 471.0	H=0.828	0.661
Mean ± SD.	190.3 =	± 104.1	196.6 :	± 98.82	258.7	± 186.2	11-0.020	0.001
HbA1c (%)								
Min. – Max.		15.60		15.10		- 14.30	F=0.930	0.400
Mean \pm SD.	9.20 -	± 2.97	10.56	± 3.45	9.20	± 4.52	1=0.950	0.400
Total cholesterol								
(mg/dl)			100.0 000.0					
Min. – Max.		- 341.0	108.0 - 232.0		155.0 - 239.0		F=0.027	0.973
$Mean \pm SD.$	184.5 :	± 52.53	180.7 ± 43.53		183.7 ± 47.93			
Triglycerides (mg/dl)	(0.0	262.0	(5.0	440.0	79.0	241.0		
Min. – Max.		- 362.0		449.0		- 241.0	II_0 105	0.404
Mean ± SD.		± 83.20	170.8 ± 101.0 152.5		175.0 ± 85.81 206.0		H=0.105	0.494
Median HDL (mg/dl)	13.	2.0	15	2.3	20	0.0		
Min. – Max.	20.0	- 90.0	21.0	54.0	20.0	- 37.0		
Min. $-$ Max. Mean \pm SD.	41.39 =		21.0 - 54.0 34.92 ± 12.52		26.33 ± 9.29		H=5.123	0.077
LDL (mg/dl)	71.39	- 15.00	54.92	- 14.34	20.33	- 1.47		
Min. – Max.	21.0 -	242.0	57.0-	186.0	72.0	- 178.0		
Mean \pm SD.		± 49.85		± 41.22		± 53.20	F=0.111	0.895
Urea (mg/dl)	10710	,	110.0					
Min. – Max.	20.0 -	126.0	22.0 -	- 60.0	30.0	-41.0	H=0.024	0.988
Mean \pm SD.		± 18.44		± 13.50		± 5.69		
Creatinine(mg/dl)								
Min. – Max.		- 3.98		- 1.88		- 1.20	H=0.969	0.616
Mean ± SD.	1.05 -	± 0.47	1.0 ±	0.30	1.06	± 0.12		
GPT (U/L)								7
Min. – Max.		- 56.0		- 59.0		- 26.0	H=1.284	0.526
Mean ± SD.	25.69 -	± 10.08	29.50	± 13.37	21.0	± 4.36		
GOT (U/L)		50 0	1		10.0	05 C	E 1 200	0.050
Min. – Max.		- 53.0		- 66.0		- 27.0	F=1.380	0.259
Mean \pm SD.	29.06 -	± 10.75	32.08 -	± 14.02	20.0	± 8.89		

Table (4): Relation between KCNQ1 (rs2237895) and different parameters in diabetes group (n = 66).

Mahmoud A. Alshenawy et al.

Hb Min. – Max. Median	8.80 – 16.70 12.40	9.80 - 15.20 13.50	10.70 – 13.50 11.20	F=1.355	0.265
RBCs Min. – Max. Mean ± SD.	3.45 - 5.64 4.62 ± 0.44	4.11 - 5.57 4.91 ± 0.42	4.07 - 4.66 4.38 ± 0.30	F=2.936	0.060
HCT Min. – Max. Mean ± SD.	28.20 - 45.0 37.20 ± 3.99	32.60 - 46.20 38.86 ± 3.69	31.80 - 39.70 35.03 ± 4.14	F=1.430	0.247
WBCs Min. – Max. Mean ± SD.	1.90 - 14.50 7.70 ± 3.05	5.0 - 11.70 8.63 ± 2.42	7.0 - 21.40 12.30 ± 7.92	H=2.757	0.252
PLTs Min. – Max. Mean ± SD.	120.0 - 404.0 260.0 ± 71.91	184.0 - 407.0 261.7 ± 74.19	179.0 - 450.0 328.7 ± 137.7	F=1.183	0.313

 χ^2 : Chi square test MC: Monte Carlo H: H for Kruskal Wallis test F: F for ANOVA test p: p value for comparison between different categories

Association between TCF_7L_2 (rs7903146) and $KCNQ_1$ (rs2237895 & rs2237892) genetic variants and risk of developing type 2 diabetes (T_2D) in Egyptian populations

	group (n		CF7L2 (rs'	7903146)				
	CC (n		CT (n	· · ·	TT (r	1 = 26	Test of Sig.	р
	No.	%	No.	%	No.	%		r
Age (years)								
30-40	1	6.7	2	8.0	1	3.8		
41 - 50	2	13.3	6	24.0	8	30.8		
51 - 60	4	26.7	10	40.0	6	23.1	$\chi^2 = 6.098$	^{мс} р=0.657
61 – 70	7	46.7	5	20.0	10	38.5	,,,	
71 - 80	1	6.7	2	8.0	1	3.8		
Min. – Max.	40.0 -	73.0	37.0 - 74.0		40.0	- 77.0	E 0.221	0.710
Mean ± SD.	5787 ±	9.87	55.28 ±	10.34	56.73	± 9.77	F=0.331	0.719
Gender								
Male	9	60.0	10	40.0	11	42.3	2 1 604	0 421
Female	6	40.0	15	60.0	15	57.7	$\chi^2 = 1.684$	0.431
FBS (mg/dl)								
Min. – Max.	86.0 -	471.0	83.0 -	422.0	82.0 - 455.0		H=2.021	0.264
Mean \pm SD.	162.9 ±	98.52	198.5 ±	101.3	209.1	± 117.8	П=2.021	0.364
HbA1c (%)								
Min. – Max.	5.30 -	15.10	4.80 -	15.60	5.70 -	- 15.60	F=1.236	0.297
Mean ± SD.	8.74 ±	3.08	10.19 :	± 3.56	9.14	± 2.61	1-1.230	0.297
Toal cholesterol								
(mg/dl)								
Min. – Max.	131.0 -		108.0 - 298.0		98.0 - 311.0		F=0.963	0.387
Mean \pm SD.	198.1 :	± 52.3	175.3 ± 48.5		183.6 ± 50.59		1=0.905	0.507
Triglycerides								
(mg/dl)								
Min. – Max.	73.0 -		60.0 -		66.0 - 449.0		H=0.363	0.834
Mean ± SD.	162.4 ±	71.87	161.0 ±	90.36	175.3	± 89.93		
HDL (mg/dl)	•••		• • •	53 0		-		
Min. – Max.	20.0 -		20.0 -			- 70.0	H=0.601	0.740
Mean \pm SD.	38.40 ±	: 16.71	39.36 ±	: 12.93	40.35	± 13.29		
LDL (mg/dl)	70.0	222 0	22.0	2 4 2 0	21.0	017.0		
Min. – Max.	78.0 -		22.0 -			- 217.0	F=1.187	0.312
Mean \pm SD.	127.2 ±	46.15	103.7 ±	48.52	108.7	± 47.93		
Urea (mg/dl)	20.0 -	67.0	22.0	126.0	21.0	75.0	11-0.220	0.907
Min. – Max.			23.0 -			- 75.0	H=0.220	0.896
$\frac{\text{Mean} \pm \text{SD.}}{\text{Creatining}(mg/dl)}$	37.87 ±	13.33	40.76 ±	21.42	51.13	± 13.78		
Creatinine(mg/dl) Min. – Max.	0.76 –	1.50	0.70 –	3 08	0.62	1.40	H=0.009	0.996
Min. $-$ Max. Mean \pm SD.	0.76 – 1.01 ±				0.62 - 1.40		11-0.009	0.990
$\frac{\text{Mean} \pm \text{SD.}}{\text{GPT} (\text{U/L})}$	1.01 ±	0.22	1.13 ± 0.65		0.98 ± 0.20			
$\frac{\text{GPT}(U/L)}{\text{Min.} - \text{Max.}}$	12.0 -	59.0	10.0	52.0	13.0	- 56 0	H=1.161	0.560
Min. $-$ Max. Mean \pm SD.	$12.0 - 28.07 \pm$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11-1.101	0.500		
	20.07 ±	15.00	20.00	2.30	24.03	- 2.13		
GOT (U/L)								
Min. – Max.	10.0 -		14.0 - 53.0			- 48.0	F=0.305	0.738
Mean ± SD.	29.73 ±	15.16	30.28 ±	11.24	27.85	± 9.21		
Hb	<i>a</i>							
Min. – Max.	8.80 -		9.50 -			- 15.20	F=0.201	0.818
Mean \pm SD.	12.81	± 1.94	12.66 -	± 1.56	12.48	± 1.42		

Table (5): Relation between TCF7L2 (rs7903146) and laboratory investigation in diabetes group (n = 66).

Mahmoud A. Alshenawy et al.

RBCs					
Min. – Max.	3.45 - 5.64	3.49 - 5.35	4.07 - 5.57	F=0.823	0.444
Mean \pm SD.	4.79 ± 0.56	4.62 ± 0.44	4.63 ± 0.36		
НСТ					
Min. – Max.	28.20 - 43.90	28.20 - 46.20	31.80 - 44.80	F=0.189	0.828
Mean \pm SD.	37.96 ± 4.45	37.25 ± 4.20	37.22 ± 3.56		
WBCs					
Min. – Max.	1.90 - 21.40	2.70 - 13.30	3.90 - 14.20	H=5.420	0.067
Mean \pm SD.	9.91 ± 4.67	7.89 ± 2.71	7.20 ± 2.59		
PLTs					
Min. – Max.	137.0 - 450.0	143.0 - 407.0	120.0 - 392.0	F=0.350	0.706
Mean ± SD.	252.9 ± 74.08	272.8 ± 74.97	260.5 ± 78.66		

 χ^2 : Chi square test MC: Monte Carlo H: H for Kruskal Wallis test F: F for ANOVA test p: p value for comparison between different categories

العلاقة بين المتغيرات الجينية (rs7903146) , KCNQ1(rs2237895&rs2237892) وTCF7L2 (rs7903146) , KCNQ1 العلاقة بين المتغيرات المصريين

محمود عبد الحميد الشناوي¹ * ، مصطفى عبد الصمد صقر² ، محمد فاروق الشال¹، شهيرة مرسى الشافعي³ ، محمد يونس نصر¹ 1- قسم البيولوجيا ، معهد بحوث الهندسة الوراثية والتكنولوجيا الحيوية (GEBRI) ، جامعة مدينة السادات ، مدينة السادات ، مصر. "2- قسم المشخصات الجزيئية والعلاجيات، معهد بحوث الهندسة الوراثية والتكنولوجيا الحيوية (GEBRI) ، جامعة مدينة السادات ، مصر." "3- قسم المشخصات الجزيئية معهد بحوث الهندسة الوراثية والتكنولوجيا معهد بحوث الهندسة الوراثية مع معانية والتكنولوجيا الحيوية (GEBRI) ، معمد بعد المعادات ، مصر."

mahmoud.abdelhamid.stu@gebri.usc.edu.eg : البريد الالكترونى للباحث الرئيسى البريد اللكترونى للباحثين المشاركين Mostafa.sakr@gebri.usc.edu.eg mohamed.younis@gebri.usc.edu.eg

المستخلص

يعد مرض السكر حالة خطيرة يرتفع فيها مستوى الجلوكوز في الدم وذلك بسبب عدم افراز كمية كافية من الأنسولين أو عدم قدرة الجسم على إستخدام الأنسولين وهو النوع الأكثر انتشارا من السكر، ويؤثر على ما يقرب من 90% من مرضى السكر على مستوى العالم. في مرضى السكر من النوع الثاني لا تستجيب العضلات والدهون وخلايا الكبد بشكل مناسب للأنسولين، وبالتالي لا تستطيع امتصاص الجلوكوز من الدم أو تخزينه بشكل فعال. ويعرف هذا بمقاومة الإنسولين. واتعويض ذلك يقوم البنكر يلي من 10% من مرضى المنكر على مستوى العالم. في مرضى السكر من النوع الثاني لا تستجيب العضلات والدهون وخلايا الكبد بشكل مناسب للأنسولين، وبالتالي لا تستطيع امتصاص الجلوكوز من الدم أو تخزينه بشكل فعال. ويعرف هذا بمقاومة الإنسولين. ولتعويض ذلك يقوم البنكرياس بإنتاج كميات إضافية من الأنسولين ، وبمرور الوقت لا يتمكن البنكرياس من الإستمرار في إنتاج الأنسولين الكافي للمحافظة على مستويات الجلوكوز الطبيعية في الدم. كان الهدف من هذه الدراسة هو استنتاج وجود علاقة بين الخاسولين الكافي للمحافظة على مستويات الجلوكوز الطبيعية في الدم. كان الهدف من هذه الدراسة هو استنتاج وجود علاقة بين الجنيان الكوني المحافظة على مستويات الجلوكوز الطبيعية في الدم. كان الهدف من هذه الدراسة هو استنتاج وجود علاقة بين الجنيات الكافي للمحافظة على مستويات الجلوكوز الطبيعية في الدم. كان الهدف من هذه الدراسة هو استنتاج وجود علاقة بين الجنيات الكافي للمحاء ولات الجراء تحليل KCNQ1 على الإستمرار في إنتاج لاجبيات الجنيات المصريين . تم إجراء تحليل KCNQ1 على الأسواي الجينات (300 ملاحاء) وقد تبين مرض السكر وبين الجينات (300 ملاحا) وعدم وجود علاقة الجينات (350 ملاحا) من 120 ملي من الودي من ما وحدم وجود علاقة وجود علاقة بين مرض السكر و الجين (3237892) هو مركاما الحرام الإحدام ، يعتبر كل من (314 من الماحر) ور الماحر) من الأصحاء ولاد تبين من ما من 120 من السكر و الجين (3237892) وعدم وجود علاقة (3237892) ما الحكر و مالسكر ي من النوع الثاني في ما من (3237892) و ما المكرر و مالسكر و الجين (3237892) ما المكر ي من السكر ي من النوع الثاني في مار الماحاء و ما السكر و ما السكر و ما السكر و ما السكر ي من السكر ي ما السكر و الجينات (3237892) ما الركري ما السكر ي من النوع الثاني ومام الور الي الور الماحا مالور الماحا م ومرض السكريي ما الس