Waleed W. Nazeer

Department of Botany and Microbiology, Faculty of Science, Minia University, EL-Minia 61519, Egypt Corresponding author email: waleed.nazeer@mu.edu.eg

Received: August 23, 2022; Accepted: September 2, 2022; Available online: September 5, 2022

ABSTRACT

A novel chitinase enzyme with molecular weight of approximately 50KDa was isolated from cowpea seeds. It was purified using ammonium sulphate and chitin affinity binding techniques. The enzyme was purified to 1.84-fold protein with specific activity of 2.017U/mg using ammonium sulphate precipitation and the purification increased to 7.76-fold protein and specific activity of 8.479 U/mg after chitin affinity binding technique. The enzyme showed strong antifungal activity against *Fusarium oxysporum*, *F. solani* and *Alternaria alternata* and moderate activity against *Penicillium frequantes*. The new enzyme may represent an additional element for constitutive defense in cowpea plant. The enzyme also showed moderate antifungal activity against *Saccharomyces cerivisiae* and very strong activity against *Candida Albicans*. This finding suggests its possible role as antifungal agent against some phytopathogenic fungi in the field and also its possible usage in food industry and food preservation. Besides, its anticandidal activity suggests its possible pharmaceutical applications.

Keywords: *Vigna unguiculata*, chitinase, chitin affinity binding, antifungal, biotechnological applications.

INTRODUCTION

Cowpea (Vigna unguiculata) is an important crop in tropical and subtropical areas around the world (Steel et al., 1985). It is considered as important source for human consumption and animal feeding (Steel et al., 1985; Steel and Mehre, 1980). Cowpea seeds are heavily affected by a great number of pathogens and this may be due to the low level of defenses, either constitutive or induced, in this plant (Gomes and Xavier-Filho, 1994; Xavier-Filho et al., 1989). But several varieties or cultivars of cowpea can express defense activity against viruses, bacteria, fungi and insects (May et al., 1988). Several of these defenses are proteinsous compounds (Carvalho et al., 2001; Gomes et al., 1996; Sales et al., 2000; Xavier-Filho, 1991).

Few studies have focused on the defense proteins from cowpea seeds.Conditions for extraction of proteins

from cowpea were described by Sefa-Dedeh and Stanley (1979) followed by characterization of these proteins in the same year. It was also reported that antimicrobial peptides (Carvalho et al.,2001), pathogenesis related (PR) proteins that inhibit growth of fungi and insects (Gomes et al., 1996) and proteins with antiviral and antifungal (Ye et al.,2000) have been found in seeds of this plant.

The role of chitinase during infection of cowpea plant seeds by fungi is not understood. One reason for this lack of understanding is the low levels of this enzyme found in these organs. Therefore, present study aimed to investigate the presence of novel chitinase enzyme in cowpea that has antifungal activity which can describe its role in plant defense and also its possible role in various industrial applications.

MATERIALS AND METHODS 1.Plant material:

Dry seeds for cowpea (*Vigna unguiculata*) were obtained from the local market.

2.Extraction of seed proteins:

50 g of cowpea seeds were soaked in water at 4° C for 48 hours. The soaked seeds were homogenized in 500ml of 50mM sodium phosphate buffer (PH 6.4). The extract was centrifuged at 14000rpm for 15 min at 4°C. The supernatant was used for further experimentation.

3. Purification of Chitinase enzyme: a. Ammonium sulphate precipitation:

150 ml of protein extract were precipitated with 80% ammonium sulphate saturation and the mixture was stored at 4°C overnight. The precipitate was collected by centrifugation at 4°C for 10 min at 14000 rpm. The precipitate was dissolved in 30 ml of 50 mM sodium phosphate buffer (PH 6.4) and dialyzed overnight against the same buffer at 4°C.

b. Chitin affinity binding:

Colloidal chitin was prepared according to method of Lee et al. (2009):1 g chitin powder was added slowly to 20 ml Hcl (concentrated) and kept at 4°C overnight with stirring. Mixture was then added to 200 ml ice-cold 95% ethanol with vigorous stirring and left at 4°C overnight. Precipitate was collected by filtration and dialyzed against distilled water till nutrient PH using dialysis tubing, and then the final volume was raised to 100 ml using ddH₂O. For chitin affinity 20ml of protein dialysate were mixed with 10ml of colloidal chitin prepared using 50mM sodium phosphate buffer PH 6.4. Mixture was left overnight at 4°C with continuous stirring. Mixture then was centrifuged at 10000rpm for collecting colloidal chitin for 10 min at 4°C. The precipitate was washed four times with 25 ml of 50 mM phosphate buffer for removal of unbound proteins. Then the protein (chitinase) was eluted from the precipitate with 25 ml of 50mM phosphate buffer containing 1M Nacl at PH 6.4. Mixture was stirred overnight at 4°C for elaboration the enzyme from colloidal chitin. After centrifugation at 10000rpm the supernatant was precipitated with 100% ammonium sulphate saturation. Pellet was dialyzed and dissolved in 5 ml of 50mM sodium phosphate buffer PH 6.4.

4. Measurement of chitinase activity:

The reaction mixture consisted of 750 ul of 1% (w/v) colloidal chitin suspended in 0.1mM acetate buffer and 750 ul of enzyme solution. After incubation at 40°C for 60 min, the reaction mixture was centrifuged at 14000rpm for 5 min and the supernatant was used for sugar analysis using reduced the dinitrosalicylic acid (DNS) method. One unit (U) of chitinase activity was defined as the amount of chitinase enzyme necessary to release 1umol GlcNAc per minute under the above mentioned conditions (Nawani and Kapadnis, 2005).

5.Determination of chitinase molecular weight:

Molecular mass of purified chitinase enzyme was determined by (SDS-PAGE) according to method of Laemmli (1970). Samples were mixed 1:4 with sample buffer and boiled for 10 min. Standard protein size marker (Geneaid) was used. Gels were stained in 0.1% (w/v) Coomassie brilliant blue R-250 (Sigma), 30% (v/v) methanol and 10% (v/v) glacial acetic acid and destaining was performed using solution of 30% (v/v) methanol and 10% glacial acetic acid in distilled water. Chitinase molecular weight was determined by comparing to those of the marker proteins.

6.Total protein estimation:

The protein concentration of samples was determined according to the method of Bradford using bovine serum albumin (Sigma) as standard Bradford (1976).

7. Antifungal activity:

Fungal isolates (Fusarium oxysporum, Fusarium solani, Alternaria alternate, penicillium frequantes, Saccharomyces cerevisiae and Candida albicans) were obtained from the fungal collection present in Botany and Microbiology department, Minia University. For antifungal activity test the filamentous fungi were subcultured on potato-dextrose agar medium (PDA) for 7 days and for test 5mm plug of fungi were inoculated to the center of petri dishes containing PDA medium and dishes were incubated for 48 h at 30°C, then wells of 5mm were made in the agar infront of fungal colonies and 20ul of purified enzyme or buffer (as control) were added into the wells and plates then incubated for 24h at 30°C. In this manner if the enzyme has antifungal activity then a crescentshaped zone of fungal growth inhibition will be observed around the well. For yeasts, both Saccharomyces cerivisiae and Candida albicans were subcultured in potato-dextrose (PDA) for 24h and the optical density of the fungal suspension was adjusted to reading OD600=0.2 and 1ml of this suspension was spread on PDA plates, then two sterile filter paper discs were placed on the top of the agar surface and 20ul of the purified chitinase enzyme or of buffer (as control) were applied to the discs. Plates were incubated for 24h at 30°C and clear zones formation around discs were checked.

RESULTS

Total proteins of cowpea seeds were extracted using 50mM sodium phosphate buffer (PH 6.4). And after ammonium sulphate precipitation (80% saturation) the chitin affinity binding technique was used for purification of a new chitinase enzyme. The purification method results showed that the enzyme was purified 1.84-fold with a specific activity of 2.017 U/mg protein after ammonium sulphate precipitation and after the chitin affinity binding purification step the enzyme purified to 7.76 fold with a specific activity of 8.479 U/mg protein (Table 1).

Step	Volume (ml)	Protein (mg)	Activity (Units)	Specific activity (U/mg)	Purification (fold)	Yield (%)
Crude extract	150	118.5	129.54	1.092	1	100
80% (NH ₄) ₂ SO4	30	50.46	101.81	2.017	1.84	78.59
Chitin affinity Binding	5	0.98	8.31	8.479	7.76	6.41

 Table 1. Purification of chitinase from Vigna unguiculata.

The purified enzyme showed one intense band on SDS-PAGE of approximately 50 KDa (Fig 1). The purified enzyme was tested for its antifungal activity, since it showed strong antifungal activity against *F. oxysporum. F. solani*, and *A. alternata* and moderate activity against *P. frequantes* (Fig 2). The purified enzyme was also tested against two yeast isolates, namely *Saccharomyces cerivisiae* and *Candida albicans* and it showed moderate effect on *S. cerivisiae* and very strong effect against *C. albicans* (Fig 2).

Fig 1. Purification of chitinase from *Vigna unguiculata* by SDS-PAGE. Lane M: molecular mass standards; lane 1, Crude enzyme; lane 2, 80% ammonium sulfate pellet; lane 3, chitin affinity binding.

Fig 2. Antifungal activity against different fungi (A) *F. oxysporum*, (B) *F. solani*, (C) *A. alternata*, (D) *P. frequantes*, (E) *S. cerevisiae*, (F) *C. Albicans* c :control (Buffer), s: sample(purified chitiase)

DISCUSSION

As mentioned in many reports for purification of chitinase enzymes from different sources, the chitin affinity binding technique was used here for purification of a new chitinase from cowpea seeds. The results indicated the effectiveness of the purification method in this research and the chitinase was purified to 7.76-fold with a 6.41% yield. Many other researchers have reported multistep procedure for purification of chitinase. Ye and Ng (2005) purified a chitinase throw three steps of chromatography (CM-Sephadex C-50, POROS HS and Sephadex G-75 column chromatography) from mung beans to 3.9-fold and Taira et al., (2005) purified chitinase from pineapple leaf throw four chromatography steps such as **Butyl-Toyopearl** chitin affinity, 650 column, Resource Q column and HPLC on phenyl superpose column.

The current results indicated the molecular weight of the noval isolated chitinase enzyme of approximately 50 KDa. Chitinases from plants are generally have molecular masses in the range of 25 to 35 KDa (Sahai and Manocha, 1993). But many other researchers have reported higher molecular weight chitinases i.e., *Beta vulgaris* (64 KDa) (El sayed *et al.*, 2000) and leaf rachises of Cycas (40 KDa) (Taira *et al.*, 2009).

There is interest great to understand the role of chitinases in plants since substrates for these enzymes are not present in plant tissues. Most reports are based on assumption that these enzymes are involved in defense mechanisms against fungi, since these enzymes act on the growing tips of fungal hyphae with newly deposited chitin when the plant is attacked (Chrispeels and Raikhel, 1991). In the present study we tested the growth inhibition of some selected phytopathogenic fungi, namely Fusarium oxyeporum (causing stem and root rot in cowpea), F. solani (causing damping of cowpea), Alternaria alternata (causing

destructive foliar disease of cowpea) and (pectinolytic Penicillium frequantes We observed very strong fungus). inhibition of the purified chitinase against F. oxyeporum, F. solani and Alternaria alternata and less inhibition effect on P. frequantes (Fig 2). Not very much is known about the role of chitinases in seeds, but the absence of their substrates in seeds and its presence as constituent of fungal cell strongly suggests a protective role of these hydrolases in these plants.

In this paper we also tested the antifungal activity of the purified chitinase against two yeasts, namely Saccharomyces cerivisiae (saprophytic fungus) and Candidaalbicans (causing candidiasis in human) and we observed moderate inhibition effect of the enzyme against S. cerivisiae and a very strong inhibition effect against C. albicans. The antifungal activity of the purified chitinase (either against filamentous fungi or yeast) suggests the possibility of its use for food preservation against fungi, since food industry is still facing unsolved food spoilage problems because of incursion of molds and spores. The use of conventional chemical preservation in food has their own inherent disadvantages, so to avoid that, the natural plant products can be promising alternative. So the production of new antifungal products from plants materials has become an interesting research area in food industry (Irkin and Korukluoglu, 2007). Hans et al. (2010) reported that the antifungal activity of Oat (Avena sativa) seed extracts showed great potential to prevent the spore germination of P. roqueforti, when applied on rye bread. Also Fig leaves extracts showing antifungal and antibacterial activities against some microbes in food have been reported (Hu et al., 2007; Balestra et al., 2009; Oliveira et al., 2009; Aref et al., 2010). Also, the strong antifungal activity of the purified chitinase against C. the albicans suggests possible pharmaceutical application of this enzyme,

since the previous studies revealed that fungi are the major threat to immunecompromised patients and their infections lead to the patient death. So the production of new natural antifungal products can prevent such infections (Shoham and Levitz, 2005).

Chitinase enzyme isolated and purified in this paper can throw light on additional constitutive defense present in seeds of cowpea plant together with other previously detected compounds like cyanogenetic glucosides (Jaffe, 1950), tannins and lectins (Xavier-Filho et al., 1989), proteinase inhibitors (Xavier-Filho and Ventura, 1988; Fernandes et al., 1991), variant vicilins (Macedo et al., 1993) and many others indicted that seeds, in general, contain several chemical defenses against different pathogens especially phytopathogenic fungi.

The new isolated purified enzyme can be used in different industrial and pharmaceutical applications as mentioned above. Also gene of the new chitinase can be isolated and over expressed in the same plant or for production of transgene of other plants for resistance against phytopathogenic fungi.

Conclusions:

A new antifungal chitinase enzyme was isolated and purified from cowpea seeds. It may represent additional factor for constitutive defense in seeds of this plant. The enzyme can be used in several biotechnological applications.

REFERENCES

- Aref, H.L.; Salah, K.B.; Chaumont, J.P.; Fekih, A.; Aouni, M. and Said, K. (2010). In vitro antimicrobial activity of four *Ficus carica* latex fractions against resistant human pathogens (antimicrobial activity of *Ficus carica* latex). PaK. J. Pharm Sci., 23:53-58.
- Balestra, G.M.; Heydari, A.; Cecarelli, D.; Ovidi, E. and Quattrucci, A. (2009). Antibactrial effect of

Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop. Protection, 28:807-11.

- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein dye binding. Anal. Biochem., 72:248-54.
- Carvalho, A.O.; Machado, O.L.T.; Da, Cunha, M.; Santos, I.S. and Gomes, V.M. (2001). Antimicrobial peptides and immunolocalization of LTP in *Vigna unguiculata* seeds. Plant Physiol. Biochem., 39:137-46.
- Chrispeels, M.J., and Raikhel, N.N. (1991). Lectins, lectin genes, and their role in plant defense. Plant cell, 3:1-9.
- El-Sayed, S.T.; Salem, A.M., Shehata, A.N. and Jwanny, E.W. (2000). Chitinase from leaves of *Beta vulgaris* and other higher plants. Pak. J. Biol. Sci, 3: 250-56.
- Fernandes, K.V.S.; Campos, F.A.P.; Do Val, R.R. and Xavier-Filho, J. (1991). 'The expression of papain inhibitors during development of cowpea seeds. Plant Sci., 74: 179-84.
- Gomes, V.M.; Oliveira, A.E.A. and Xavier-Filho, J. (1996). A chitinase and B- 1,3- Glucanase isolated from the seeds of cowpea (*Vigna unguiculata* L. Walp.) inhibit the growth of fungi and insect pests of the seed. J. Sci. Food Agric., 72: 86-90.
- Hans, P.S.; Madsen, L.S.; Petersen, J; Tapdrup, J.A.; Hansen, A.M. and Christian, B.H. (2010). Oat (*Avena sativa*) seed extract as an antifungal food preservative through the catalytic activity of a highly abundant class I chitinase. Appl.Biochem. Biotechnol, 160: 1573-84.
- Hu, L.L.; Li, Y.Q.; Jin,Y.L. and Meng, Z.L. (2007). Studies on fungicidal

constituents in *Ficus carica* L. leaves. J. Qingdao. Agric. Uni. (Nat Sci), 24: 264-66.

- Irkin, R. and Korukluglu, M. (2007). Control of *Aspergillus niger* with garlic, onion and leek extracts', Afr. J. Biotechnol., 6: 384-87.
- J., Gomes V. M. and Xavier-Filho (1994). Biochemical defences of plants. Arq. Biol. Tecnol, 37: 371-83
- Jaffe, W.G. (1950). Studies on the inhibitors of growth of rats by certain legume seeds., Acta. Cient. Venezol, 1:62-64.
- Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-85.
- Lee, Y. G.; Chung, K. C.; Wi, S. G.; Lee, J. C. and Bae, H. J. 2009. 'Purification and properties of a chitinase from *Penicillium* sp. LYG 0704', *Protein Expr. Purif.*, 65: 244-50.
- Macedo, M.L.R.; Andrade, L.B.S.; Moraes, R.A. and Xavier-Filho, J. (1993). Vicilin variants and the resistance of cowpea (*Vigna unguiculata*) seeds to the cowpea weevil (*Callosbruchus maculatus*). Comp. Biochem. Physiol, 105C: 89-94.
- May, P.H.; Teixeira, S.M. and Santana, C.A. (1988). Cowpea production and economic importance in brazil. In: Cowpea Research in Brazil. Eds F F Watt and J.P.P. Araujo: 31-62 IITA/EMBRAPA. Ibadan. Nigeria.
- Nawani, N.N. and Kapadnis, B.P. (2005). Optimization of chitinase production using statistics based experimental designs. Process Biochem., 40: 651-60.
- Oliveria, A.P.; Valentao, P; Pereira, J.A.; Silva, B.M.; Tavares, F. and Andrade, P.B. (2009). *Ficus carica* L: Metabolic and biological

screening. Food Chem. Toxicol., 47: 2841-46.

- Sahai, A.S. and Manocha, M.S. (1993). Chitinase of fungi and plants : their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol. Rev., 11: 317-38.
- Sales, M.P.; Gerhardt, I. S.; Grossi-de-Sa, F. and Xavier-Filho, J. (2000). Do legume storage proteins play a role in defending seeds against bruchide?. Plant Physiol., 124: 512-22.
- Sefa-Dedeh, S. and Stanley, D. (1979). Cowpea proteins 2 Characterization of waterextractable proteins. J. Agric. Food Chem., 27: 1244-47.
- Shoham, S. and Levitz, S.M. (2005). Immune response to fungal infections. Braz. J. Haematol., 129: 569-82.
- Steele, W.M.; Allen, D.J. and Summerfield, R.J. (1985). Cowpea (*Vigna unguiculata* (L.) Walp.). Grain Legume Crops: 520-83.
- Steele, W. M. and Mehre, K.L. 1980. 'Structure, evolution, and adaptation to farming systems and environments in *Vigna*. In: Advances in Legume Science; Summerfield, R.J., Bunting, A.H., Eds.; HMSO: London: 393-404.
- Taira, T.; Hayashi, H.; Tajiri, Y. and Onaga,S. (2009). A plant cass V chitinase from a cycad (*Cycas revoluta*): Biochemical charactrization, cDNA isolation, and post translational modification. Glycobiology, 19:1452-61.
- Taira, T.; Toma, N. and Ishihara, M. 2005. 'Purification, Charactrization and Antifungal activity of chitinase from Pineapple (*Anana camosus*) leaf. Biosci. Biotechnol. Biochem., 69: 189-96.
- Xavier-Filho, J. (1991). The resistance of seeds of cowpea (*Vigna unguiculata*) to the cowpea weevil

(Callosobrudus maculatus). Mem.Inst. Oswaldo Cruz, 86: 75-77.

- Xavier-Filho, J. and Ventura, M.M. Trypsin inhibitors (1988). in cowpea: A review. Commun. Agric. Food Chem., 1: 239-64.
- Xavier-Filho, J.; Campos, F.A.P.; Ary, Silva. C.P.: Carvalho. M.B.: M.M.M.; Macedo, M.L.R.; Lemos, F.J.A. and Grant, G. (1989). Poor correlation between the levels of porteinase inhibitors found in seeds of different cultivars of cowpea (Vigna *unguiculata*) and

resistance/susceptibility of predation by Callosobruchus maculates. J. Agric. Food Chem., 37:1139-43.

- Ye, X. and Ng, T.B. (2005). A chitinase with antifungal activity from the mung bean., Protein Expr. Purif., 40:230-36.
- Ye, X.Y.; Wang, H.X. and Ng, T.B. (2000).Structurally dissimilar proteins with antiviral and antifungal potency from cowpea (Vigna unguiculata) seeds. Life Sci., 67: 3199-207.

فصل و تعريف لانزيم كيتنيز جديد من نبات اللوبيا مع التطبيقات الحيوية الممكنة له

وليد نظير قسم النبات و الميكروبيولوجي كلية العلوم جامعة المنيا

المستخلص

تم عزل انزيم كيتنيز جديد ذو وزن جزيئي حوالي 50 كيلو دالتون من نبات اللوبيا. الانزيم تم تنقيته باستخدام كل من تقنية الترسيب بكبر يتات الامونيوم وتقنية قابلية الارتباط بالكيتن. تم تنقية الانزيم باستخدام كبريتات الامونيوم 1.84 ضعف مع نشاط نوعى 2.01 وحدة/ملجم، وزادت التنقية الى 7.76 ضعف مع نشاط نوعى 8.479 وحدة/ملجم بعد اجراء الارتباط بالكيتن. أظهر الانزيم نشاطا قويا مضادا للفطريات ضد F. solani و F. solani ، و A. alternata ، ونشاطا متوسطا ضد P. frequantes . الانزيم ربما يمثل عنصرا اضافيا في الدفاع ضد الفطريات لنبات اللوبيا. الانزيم أظهر نشاطا متوسطا مضادا للفطريات ضد S. cerivisae ونشاطا قويا ضد C. albicans. النتائج تشير الى أهمية دور الانزيم كمضاد للفطريات الممرضة للنباتات في الحقل و كذلك امكانية استخدامه في صناعة وحفظ العذاء، كذلك نشاط الانزيم المضاد للخمائر يظهر امكانية استخدامه في التطبيقات الدو ائية.